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Abstract. We have determined the mass function of loose groups of galaxies in the Las Campanas Redshift Survey.
Loose groups of galaxies in the LCRS range in mass from M � 1012M� to 1015M�. We �nd that the sample is
almost complete for masses in the interval 5 � 1013 � 8 � 1014 M�. Comparison of the observed mass function with
theoretical mass functions obtained from N-body simulations shows good agreement with a CDM model with the
parameters 
m = 0:3, 
� = 0:7 and the amplitude of perturbations about �8 = 0:78 � 0:87. For smaller masses
the mass function of LCRS loose groups 
attens out, di�ering considerably from the group mass function found
by Girardi and Giuricin (2000) and from mass functions obtained by numerical simulations.
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1. Introduction

One important constraint of cosmological models is pro-
vided by the mass function of clusters and groups of galax-
ies. In the case of popular �CDM models the amplitude
and shape of the mass function depend primarily on the
mean density of matter in the Universe, 
m = 
c + 
b,
where 
c and 
b are the mean densities of the cold dark
matter and baryonic matter in units of the critical cos-
mological density, respectively. The amplitude of the mass
function also depends on the amplitude of the power spec-
trum of density 
uctuations, which can be characterised
by the �8 parameter (the linearly extrapolated rms den-
sity 
uctuations in a sphere of of 8 h�1Mpc radius). The
local abundance of rich clusters of galaxies can be used
to estimate �8 (Bahcall, Fan & Cen 1997, de Theije, van
Kampen & Slijkhuis 1998, Cen 1998).

Determination of the cluster mass function consists of
two tasks: calculation of cluster masses, and estimation of
the spatial density of clusters. Masses of clusters can be
derived using either X-ray data and the mass-temperature
relation or data from optical surveys using the velocity
dispersion of galaxies in clusters (virial masses). In a pio-
neering study by Bahcall and Cen (1993; hereafter BC93),
both mass determination methods were used. Masses were
derived for Abell clusters of all richness classes and for
groups of galaxies. Biviano et al. (1993) and Girardi
et al. (1998, hereafter G98) calculated virial masses of
nearby clusters. Reiprich & B�ohringer (2002) used a X-ray

Send o�print requests to: P. Hein�am�aki


ux-limited sample of galaxy clusters (HIFLUGCS, the
HIghest X-ray FLUx Galaxy Cluster Sample) to obtain a
mass function. The spatial density of massive clusters of
galaxies, according to G98, exceeds the density found by
BC93 by a factor of almost ten. As shown by G98, this
di�erence is mainly due to the fact that BC93 assumed a
one-to-one correspondence between the richness of a clus-
ter and its mass, whereas in reality this relationship has
a large scatter. A new determination of the mass function
of loose groups of galaxies has been provided by Girardi
and Giuricin (2000).

The sample of loose groups of galaxies identi�ed in the
Las Campanas Redshift Survey (LCRS) by Tucker et al.
(2000, hereafter TUC) provides a possibility to derive a
new independent estimate of the mass function of clus-
ters and groups of galaxies. Loose groups represent the
most numerous component of galaxy clustering, and so
we should be able to determine their statistical properties
much better than those for rare rich clusters of galaxies.
The virial masses of loose groups of galaxies in the LCRS
range from M � 1012M� to 1015M�; these masses were
estimated by TUC using velocity dispersions of galaxies
and harmonic radii of groups.

In this paper we shall estimate the mass function of
LCRS loose groups. Our main task is to derive the spa-
tial density of groups of various masses. The volume of
the LCRS sample is well determined, thus we hope to get
an unbiased estimate of the spatial density of groups. We
shall compare the empirical mass function with theoret-
ical mass functions found using numerical simulations of
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structure evolution. In our simulations we assign to a halo
all the particles identi�ed as members of the halo by halo
�nder. In observations this means that the velocity dis-
persion of galaxies is assumed to be identical to that of
the dark matter. This comparison allows us to check the
consistency of structure evolution models with empirical
data and to �nd the set of cosmological parameters which
brings models into agreement with data. We also deter-
mine the mass interval where the sample of groups is not
in
uenced by selection e�ects.

2. The Data

2.1. Observations

The LCRS (Shectman et al. 1996) is an optically selected
galaxy redshift survey where a multi{object spectrograph
was used to measure simultaneously redshifts of 50 or 112
galaxies. Extending to a redshift of z � 0:2, the catalogue
covers 6 slices of size on average 1:5Æ � 80Æ, containing
23,967 galaxies with measured redshifts within the oÆcial
survey photometric and geometric limits. Three slices are
located in the northern Galactic hemisphere, centred at
declinations Æ = �3Æ; � 6Æ; � 12Æ, and the other three
slices are located in the southern Galactic hemisphere,
centred at declinations Æ = �39Æ; � 42Æ; � 45Æ. TUC
applied a friends-of-friends (FoF) percolation algorithm
to extract the catalogue of Las Campanas loose groups
of galaxies (hereafter LCLG). The linking parameter was
chosen to get a density enhancement limit of Æn=n � 80.
The minimum group membership was chosen to be three.

Because the spectroscopy was carried out for each �eld
either via a 50 or a 112 �bre multiobject spectrograph, the
selection criteria varied from �eld to �eld. The nominal
apparent magnitude limits for 50 �bre �elds were 16:0 �
R � 17:3 and for 112 �bre �elds the limits were 15:0 �
R � 17:7. According to TUC great e�ort was put forth
in accounting for these �eld-to-�eld sampling variations.
The general properties of the 50 �bre and the 112 �bre
groups agree well with properties of groups found from
other surveys, thus we shall use the whole TUC group
sample.

Only groups with redshifts 10; 000 � cz � 45; 000
km s�1 were included into the LCLG sample. TUC con-
cluded that the LCLG is a useful sample for a variety of
studies requiring an unbiased collection of loose groups.
It is based on the LCRS galaxy sample, which is the �rst
redshift survey that can claim to enclose a reasonably fair
sample of the nearby universe.

The complete LCLG list includes 1495 groups. TUC
also introduced a \clean sample", where groups with four
potential bias factors are excluded: 1) groups which are
too close to a slice edge, 2) groups which have the cross-
ing time greater than the Hubble time, 3) groups with
the corrected velocity dispersion zero what can happen
since TUC subtracted an redshift measurement error of
67 km/s in quadrature from each group velocity disper-
sion, and 4) groups containing a 55 arc-sec orphan galaxy,

i.e. a galaxy with no measured redshift. The last bias was
caused by technical reasons (the �bre separation limit,
which prevents the observation of neighbouring galaxies
within 55 arc-seconds of each other). In the full sam-
ple this e�ect was compensated for by reintroducing lost
galaxies, assigning to them a redshift equal to that of its
nearest neighbour, convolved with a Gaussian of width
� = 200 km s�1.

2.2. Simulations

A low density CDM universe with a cosmological con-
stant (�CDM) is widely regarded as the best model com-
patible with most of the currently available data; e.g.
with the microwave background anisotropy measured by
BOOMERANG (de Bernardis et al. 2000) and MAXIMA
I (Hanany et al. 2000) experiments, and with data on the
large scale structure of the universe: two-point correlation
functions and power spectra, and the spatial density of
mass-limited samples of galaxy clusters (Governato et al.
1999, Colberg et al. 2000, Pierpaoli et al. 2001).

For the present study we employ a 
at cosmologi-
cal model (
m + 
� = 1) with the following parame-
ters: the matter density 
m = 0:3, the baryonic density

b = 0:04, the vacuum energy density (cosmological con-
stant) 
� = 0:7, and the Hubble constant h = 0:7 (here
and throughout this paper h is the present-day Hubble
constant in units of 100 km s�1 Mpc�1). The simula-
tions were performed using a P3M code (Couchman 1991)
for a cube of 200 h�1Mpc size and a 2563 mesh and for
the same number of particles; each particle has a mass of
4:0�1010h�1M�. The transfer function was computed us-
ing the CMBFAST code by Seljak and Zaldarriaga (1996).
The rms mass density 
uctuation parameter of this model
is �8 = 0:87.

We also calculated an additional model using the
same code with 1283 particles in a cube of size L =
100 h�1Mpc, and the cosmological parameters 
m = 0:3,

� = 0:7, 
b = 0:05, and h = 0:65; this COBE normalised
model has the density 
uctuation parameter �8 = 0:78.

We used the FoF algorithm to identify CDM halos.
The only free parameter in the FoF method is the linking
length, which is de�ned as the maximum separation be-
tween particles which are still joined into groups. In our
case the linking length was chosen as 0.23 in units of the
mean particle separation, which approximately selects the
matter density contrast Æn=n = 80. This density contrast
was the one chosen by TUC to extract the group catalogue
from LCRS, and it is typical of the values used in extract-
ing groups from observational galaxy catalogues. While in
the Einstein-de Sitter universe the overdensity within the
virial radius of a cluster is Æn=n = 178, in a low density
spatially 
at universe with a cosmological constant it is
Æn=n � 178
�0:6

m (White et al. 1993). The correspond-
ing overdensity for our simulation is Æn=n � 366. This
means that the group sample determined using a low den-
sity contrast (Æn=n = 80) contains groups which can be
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in an uncertain dynamical state and do not have to be
virialised. When particles outside the virialised core are
included in the groups, the masses of simulated groups
may be overestimated. For comparison we also calculated
the mass function of publicly available numerical simula-
tions of the Virgo consortium1, where Jenkins et al. 1998
selected FoF-groups with a linking length of 0.2 of the
mean inter-particle separation.

3. Results

3.1. Selection e�ects in the LCLG sample

At �rst we discuss selection e�ects and show how we took
them into account when calculating the mass function.
There are two main selection e�ects in the LCRS: 1) ob-
servations are performed in a �xed apparent magnitude
interval which transforms to a distance dependent abso-
lute magnitude interval, galaxies fainter or brighter than
this interval are not included in the survey; 2) depending
on the �eld 50 or 112 galaxies were measured for redshifts,
the actual number of galaxies in the magnitude window
could be larger, thus the sample is diluted.

The �rst selection e�ect makes it impossible for galax-
ies outside the window to enter the survey. Consequently
groups consisting of faint galaxies occur only in the near-
est region of the survey; with increasing distance fainter
groups gradually disappear from the sample. This e�ect
is seen in Figure 1 where the total luminosity of LCRS
loose groups is shown as a function of distance. This se-
lection e�ect can be statistically corrected using individual
weights in calculation of the group mass function, follow-
ing the procedure by Moore, Frenk & White (1993) and
Girardi & Guiricin (2000). Namely, we weight each group
by w = 1=�, where � is the volume, which corresponds to
the absolute magnitude limit of the third brightest galaxy
of a group; if � > �0 (the full volume of a slice), we take
� = �0. The data to calculate these limits have been
tabulated by TUC separately for each of the 327 spec-
troscopic �elds of the LCRS. Figure 2 shows the distri-
bution of the normalised weights w0 (in units of the full
volume of a slice) as a function of group mass. We see that
there is a weak relation between cluster mass and the rel-
ative weight: massive groups contain as a rule suÆciently
bright galaxies and can be observed in the whole volume
of the survey, thus for massive clusters the relative weight
is closer to unity.

Now we consider the second selection e�ect. To esti-
mate the degree of dilution of the LCRS we compare the
surface density of galaxies of the LCRS with the surface
density of the Sloan Digital Sky Survey. Here the goal was
to measure all galaxies in the magnitude window. The
number of galaxies with measured redshifts in the Early
Data Release of SDSS is 70 per square degree, while the
LCRS has only 20 galaxies per square degree in the �6Æ
slice, and 30 � 38 per square degree in the rest of slices.

1 http://www.MPA-Garching.MPG.DE/Virgo/
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Fig. 1. The total luminosity of the Las Campanas loose groups
as a function of their distance
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Fig. 2. The weighting parameter w0 as a function of the group
mass

The faint end limit in most slices of the LCRS is almost
same as for the SDSS (�17:7), thus the di�erence in num-
ber density is due to dilution of the LCRS. Most slices of
the LCRS are diluted by a factor of about 2, and the slice
�6Æ by a factor of 3.5. Dilution decreases not only the
number of galaxies but also the number of clusters and
groups, as the number of galaxies in a group may fall be-
low 3 and the group will not be included in the catalogue.
The number of groups in the �6Æ slice is actually lower
than in other slices by a factor of about 2.

However, uniform dilution does not in
uence strongly
the mass function of groups. Firstly, virial masses of
groups practically do not change. When determining virial
masses, group members play the role of test particles,
which move in a common gravitational potential. Using
less test particles gives the same estimate for the poten-
tial and for the virial mass as before, only with a larger
variance. We checked this conclusion by diluting simulated
group catalogues.

Dilution may a�ect the group catalogue only by reduc-
ing the group richness of smaller groups below the cata-
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logue limit. These groups will drop out of the catalogue
and the number density of smaller (less massive) groups
will fall. We estimated this correction, using group cat-
alogues obtained in our numerical simulations and ran-
domly diluting the groups by 50%, as estimated above.
We found that the conditional probability distribution
P (logN jM) (N is the richness of a diluted group,M is the
virial mass of the group, and we use decimal logarithms
here) is close to a Gaussian with a mean

logN(M) � log(M=M�)� 11:5

and a rms error � that is also a function of the virial mass,

�(M) � 0:3(14� log(M=M�)):
The fraction � of the groups, which remain in the cata-
logue after dilution, is given then by the error integral:

�(M) = 0:5erfc

 
logNL � logN(M)p

2�(M)

!
;

where NL is the catalogue limit (3 and 5, in our case) and
logN(M) and �(M) are given above. In order to restore
the original di�erential mass function, we have to multiply
it by the factor ��1. This dilution correction is larger than
1 only in the mass interval 1012{1013M�, reaching 1.95 at
its lowest end (for NL = 3) and 2.67 for NL = 5. As the
di�erential mass function is small in this mass interval,
this correction does not change appreciably the �nal inte-
gral mass function. Also, the dilution correction does not
change the high mass end of the mass function at all.

3.2. Mass function of LCLGs

The mass function (MF) of galaxy clusters/groups is de-
�ned as the number density of clusters above a given mass
M , n(> M). To construct the group mass function from
a group sample one needs accurate group masses and well
de�ned volume and selection functions of the sample. We
have used the masses estimated by TUC, who assumed
that the groups were virialised and calculated virial masses
of groups as:

Mvir =
d�2losRh

G
; (1)

where G is the gravitational constant, Rh is the harmonic
radius of the group, �los is the group line-of-sight velocity
dispersion, and d = 6 in the case of a spherically symmet-
ric velocity distribution of the group.

We calculated the volumes of slices as follows:

V =
cos Æm���Æ

3
(r32 � r31); (2)

here Æm is the mean declination of the slice, �Æ and ��
are the widths of the slice in declination and right ascen-
sion (in radians), and r1 and r2 are the lower and upper
distance used in calculations. This formula is valid for spa-
tially 
at (k=0) cosmologies.

Table 1. The numbers of groups in the LCLG catalogue.
Columns give the mean declination of a slice, the number of
all groups by TUC, the number of groups in the clean sample
and the volume of the slice.

Slice Æ TUC Clean Volume [Mpc3=h3]

�3Æ 288 80 927902
�6Æ 147 37 823452
�12Æ 276 73 874202
�39Æ 249 71 971817
�42Æ 257 69 988435
�45Æ 256 63 941531
Total 1473 393 5527339
Mean 921223

The comoving cosmological distance r is a function of
measured redshift and depends on the cosmological model
as (e.g. Peebles 1993):

r =
c

H0

Z z

0

dz0

E(z0)
; (3)

where the function E(z) is given by

E2(z) = 
m(1 + z)3 + (1�
m �
�)(1 + z)2 +
�: (4)

The LCLG survey extends up to the redshift z � 0:15.
Tucker et al. (2000) used the Einstein-de Sitter cosmology
(assuming 
m = 1;
� = 0) to determine distances in the
LCLG survey, while modern data prefer the parameters

m=0.3 and 
�=0.7. Thus for the present study we recal-
culated comoving distances for all galaxies of the LCLG
survey. For the particular redshift range 10000 � cz �
45000 km s�1 the ratio between the comoving volumes in
these two models is about 0.8. The numbers of groups for
all slices, for the clean sample and the volume of each slice
in the LCLG catalogue are shown in Table 1. Only groups
with de�ned mass are included (for some groups the ve-
locity dispersion, corrected for random errors, is zero and
mass determination is impossible).

The MF was constructed by sorting the masses in log-
arithmic bins of width 0.2. Errors in group masses (an
estimate of the rms error in virial mass has been found
by TUC) were accounted for by convolving group masses
with a log-normal distribution of the same mode and vari-
ance. Figure 3 shows the mass function of LCLG for all six
slices. To have a general picture we added slices together
and found the average mass function, denoted by a thick
solid line. We found that the average mass function and
the mass function of the clean sample distributions are
very similar, which indicates that the di�erences between
the clean sample and the full sample are unimportant for
the MF. We also tried excluding the slice Æ = �6Æ and
found that it has only a weak in
uence on the total MF.
In order to better show the di�erences between various
slices we did not correct these mass functions for dilu-
tion. The dilution-corrected �nal mass function is given
in Table 2 and in Fig. 7.
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Fig. 3. The cumulative mass functions for all six slices in the
LCLG. The thin curves from top to bottom are labelled as seen
at the low mass end. The thick solid curve shows the average
mass function for all the clusters. These mass functions are not
corrected for dilution.

Table 2. The cumulative mass function of LCLG

log M [h�1M�] Density [h3Mpc�3]

1.26E+12 7.56E-04
3.16E+12 5.78E-04
7.94E+12 4.09E-04
1.26E+13 3.23E-04
3.16E+13 1.81E-04
7.94E+13 7.63E-05
1.26E+14 3.51E-05
3.16E+14 5.22E-06
7.94E+14 8.77E-07

There is a clear di�erence in the MF between slices.
The two northern slices at Æ = �6Æ and Æ = �12Æ di�er
from others, having the lowest and the highest amplitudes
at the faint end of the MF. We suppose that this discrep-
ancy between mass functions are due to di�erences in di-
lution, since the slice Æ = �6Æ was observed by the 50 �bre
spectrograph only and the Æ = �12Æ slice by the 112 �bre
spectrograph only. This discrepancy cannot be removed
by a luminosity-weighting procedure. The remaining dif-
ferences are probably due to cosmic variance. The slices
of the LCRS survey intersect large voids and superclus-
ters. In such slices, loose groups form a variety of struc-
tures that may in
uence the observed mass function at its
massive end, since the most massive groups (clusters) are
associated with supercluster structures.

Figure 3 shows clearly the 
attening of mass functions
at the low mass end. Such 
attening is usually interpreted
as the result of incompleteness of a sample (Girardi et al.
1998), although it could also be real, describing a dimin-
ishing number of groups of smaller masses. Thus, we have
to study the completeness problem in more detail.

To estimate the mass completeness limit of the LCLG
we can study the volume-density of the groups (within dif-
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Fig. 5. The velocity dispersion as a function of the mass for the
LCLG catalogue. The line shows the analytical (least square)
�t.

ferent mass intervals) as a function of distance. In Figure 4
lines denote mean values of the density in various mass
ranges. Any rapid fall of the lines indicates incomplete-
ness for that mass interval. We �nd from the Figure 4 that
below masses of 1013:5 � 1014M� our sample is probably
incomplete.

Another way to estimate the mass completeness limit
of the LCLG is to use the velocity dispersion distribu-
tion function, VDF (Fadda et al. 1996). The VDF is de-
�ned similarly to the MF, but for the velocity dispersion
of groups. Assuming that the VDF can be described by
a simple power law function (note that this assumption
does not have a clear physical justi�cation), Fadda et al.
(1996) set the completeness limit for their sample at the
point where the power-law exponent of the VDF starts to
change. For the LCLG this point is reached at the line-of-
sight velocity dispersion �los � 250 km/s.

Figure 5 shows the relation between �los and mass M
for the LCLG catalogue. Equation (1) de�nes the relation
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between these quantities via the harmonic radius of the
group. The dotted line illustrates a power-law �t:

�los = a

�
hM

1015M�

�c

km=s; (5)

where a = 819 and c = 0:35. The result is in quite good
agreement with previous results by del Popolo & Gambera
(2000) and del Popolo et al. (2000), a = 842 km=s and
c = 0:33, based on N-body simulations and X-ray obser-
vations. A value 1/3 for the exponent b means that the
system is virialised. The fact that the LCLG follow rather
closely the virial relation shows that the possible contam-
ination is small and the groups are physical. Setting the
completeness limit to �los = 250 km/s, based on the VDF,
in equation (5), we get an estimate for the completeness
limit in mass between 1013 �M � 1014h�1M�, with the
mean value aboutM � 5�1013h�1M�. This result agrees
with the result of the �rst analysis.

3.3. Reliability of groups

Ramella et al. (1997) and Girardi & Giuricin (2000) noted
that groups with a few (less than 5 members) may consti-
tute not real, but pseudo-groups. On average, in pseudo-
groups the velocity dispersion is considerably larger than
in real groups (Ramella et al. 1997). Indeed in the LCLG
sample, groups with less than 5 galaxies have a very large
scatter of velocity dispersions, and some velocity disper-
sions are extremely large. Analysis of a subsample, where
poor groups with only 3 or 4 members are excluded, shows
that in the w�M plane (as in Figure 2) the scatter for this
subsample is somewhat smaller than for the whole sam-
ple. However, exclusion of all poor groups decreases the
mass function considerably in the whole mass range (see
Figure 7, where the mass function is given for two cases,
for all groups and for groups with the number of members
(Nm � 5). This indicates that at least part of small groups
with a large velocity dispersion (and thus a large mass) are
probably pseudo-groups (studies by Einasto et al. 2002 in-
dicate that such groups are located mostly in low density
regions). On the other hand, most of small groups have ve-
locity dispersions in the same range as richer groups, and
are probably real. In other words, exclusion of all small
groups introduces an additional selection e�ect, which is
diÆcult to quantify.

4. Discussion

4.1. Comparison with numerical simulations

Now we compare our mass function with mass functions
found for groups in numerical simulations. Figure 6 shows
the velocity dispersion of dark matter particles in groups
as a function of the halo (group) mass in our numerical
simulations. We see that in small groups with mass less
than � 1013h�1M� (which contain less than � 250 parti-
cles) the scatter of the velocity dispersion is very large.
This phenomenon can be explained if we assume that

small groups are not yet virialised and are contaminated
by non-virialised particles, or alternatively are composed
of several small subgroups moving fast relative to each
other. Another explanation for this e�ect is that it is a
result of the chosen Æn=n | the FoF algorithm collects
particles from outskirts of small clusters although they
do not belong dynamically to the group. The fraction of
interlopers in simulated loose groups can become rather
high, about 20{30%, as found by Diaferio et al. (1999).

To test the second assumption we built groups, using a
lower linking length b = 0:17 (in units of the mean particle
separation). This did not change considerably the scatter
of the velocity dispersion among the groups with less than
250 particles. Thus the �rst explanation is more likely.

To eliminate the e�ect of unbound groups in simula-
tions we calculated both the potential and kinetic energy
for all groups and excluded unbound particles, using the
condition jEpotj < 0:8Ekin (Epot is the potential energy
and Ekin the kinetic energy of a group) for an unbound
particle. We split groups with a high kinetic energy as
compared to the potential energy to separate interact-
ing or merging groups. To this aim we employed a 6D-
group �nder with a linking measure �r2=r2 + �v2=�2v ,
where r and �v are the group e�ective (half-mass) radius
and the velocity dispersion. This procedure a�ected only
about 10% of the halos, with many of the halos having a
small number of DM particles. We show the results of our
clean-up procedure in the right panel of Figure 6, which
is similar to the left panel, only non-virialised particles
and bypassing groups are excluded. We see that our pro-
cedure to eliminate non-virialised particles works well |
the low-mass groups follow the same trend as observed for
the high-mass groups and clusters.

We have calculated the mass functions for the sample
of all groups and for the sample of virialised groups in
our simulations. These functions are very similar, only for
groups of very small mass (M < 1012 h�1M�) the MF
of virialised groups di�ers from that of all groups by less
than 1%. Thus the contribution of unbound groups to the
total mass function is practically negligible.

Figure 7 shows the mass function of dark matter halos
in our simulation together with the MF of the LCLG. The
Poisson error bars (square root of counts per bin multi-
plied with the mean weight) for the full LCLG mass func-
tion are shown by the dash-dotted lines. In order not to
overcrowd the �gure, we have not shown the error bars for
the N >= 5 sample; they are very close to those of the
full sample. For small masses (M < 5 � 1013M�) the error
bars are smaller than the size of the plotting symbols. For
comparison, Figure 7 shows also the mass function of the
simulations by the Virgo Consortium, �CDM-gif (Jenkins
et al. 1998, Kau�mann et al. 1999a). In the Virgo simu-
lation the side of the box was 141.3 h�1Mpc, the matter
density 
m = 0:3, the cosmological term 
� = 0:7, the
particle mass 1:4 � 1010M�=h, and the number of the
particles 2563. Figure 7 shows that our 1283 simulation
with the amplitude parameter �8 = 0:78 gives the best �t
among the models we used to simulate the LCLG subsam-
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Fig. 6. The left panel shows the velocity dispersion of dark matter particles in halos as a function of the halo mass. The one-
to-one correspondence between the number of particles and the halo mass is adopted. The right panel gives the same relation,
but unbound groups are removed.

ple at the massive end (2 � 1014M�� 1015M�) of the MF.
For smaller masses, down to 4 � 1013M� the model with a
higher �8 = 0:87 gives a better �t. The cluster MFs in the
Virgo Consortium simulation and in our 2563 simulation
are quite similar. For yet smaller masses, where we sus-
pect that the LCLG sample is incomplete, the LCLG mass
function 
attens out, in contrast to the rising simulated
mass functions.

Most of earlier results give �8 � 0:9 � 1 for the

m = 0:3 scenario (Eke et al. 1996, Viana and Liddle 1996
etc.). This value agrees with the recent result by Pierpaoli
et al. (2001), �8 = 1:02. Lower values are obtained based
on X-ray cluster samples. Reiprich & B�ohringer (2002)
derived for 
m = 0:3, �8 � 0:68. From the ROSAT Deep
Cluster Survey Borgani et al. (2001) derived 
m = 0:35
and �8 � 0:66. Recently Lahav et al. (2002) obtained
�8 = 0:73 using the 2dFGRS+CMB data. Finally, Bahcall
et al. (2002) used the SDSS data and got �8 = 0:72 for

m = 0:3. In principle, �8 can be determined on the basis
of the CMB data only; future experiments as MAP and
PLANCK will help to pinpoint this parameter.

4.2. Comparison with earlier work

The mass function determined by Girardi & Giuricin
(2000) is shown in Figure 7. This group catalogue was
constructed using a subsample of galaxies of the Lyon-
Meudon Extragalactic Database. Groups were identi�ed
using two di�erent methods: the FoF algorithm (P-groups,
453 groups) and the hierarchical method (H-groups, 498
groups). These group samples extend until cz � 5500
km s�1.

Here we used the P-data from �gure 3 in Girardi &
Giuricin (2000). In that case they chose the subsample of
the nearby groups with cz � 2000 km s�1. , which they as-
sumed to be a complete sample and a good representation
of the total population. However, this sample covers only
the local supercluster, while the LCLG catalogue extends
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Fig. 7. Comparison of the dilution-corrected observed mass
functions and the theoretical mass functions. The observed
mass functions are shown with symbols: �lled circles (the
LCLG whole sample), open circles (the LCLG Nm � 5) and
stars (Girardi & Giuricin (2000). The dashed line shows our
2563 simulation MF (�8 = 0:87), the solid line shows our 1283

simulation (�8 = 0:78) MF, and the dotted line shows the Virgo
Consortium simulation, MF. For clarity Poissonian errors are
shown only for one case (the full mass function).

up to distances � 450 h�1Mpc. This volume contains al-
ready a variety of structures.

We see that in the high mass range (M � 1014h�1M�)
the MFs are rather similar. Around masses M � 5 � 1013
the mass functions of the simulations and the LCLG start
to di�er from each other. Also, at these lower masses the
mass function by Girardi & Giuricin (2000) is considerably
higher than the LCLG mass function.

This is an intriguing result that certainly needs fur-
ther analysis. We see that although loose groups promise
to provide better statistics, there are a number of un-
solved problems that do not permit a realisation of this
promise at the moment. There are two problems in the
LCRS group sample: reliable determination of masses of
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small groups, and selection e�ects. Virial mass estimates
can be in error; Girardi and Giuricin (2000) try to correct
for this. Their correction is rather complicated and could
induce its own errors.

The simplest explanation of the di�erence between the
mass functions found in the present paper and that of
Girardi and Giuricin (2000) is a mass-dependent selection
e�ect. The LCRS is a strongly diluted sample of galaxies,
and it is biased against low surface brightness galaxies.
However, as shown above (Sec. 3.2), dilution practically
does not a�ect the integral mass function.

The second e�ect, the absence of low-brightness galax-
ies is probably much less present in the Lyon-Meudon
galaxy catalogue, from which Garcia (1998) extracted the
catalogue of local groups that served as a source for the
Girardi and Giuricin (2000) mass function. If low sur-
face brightness galaxies were more prevalent in low mass
groups { which is plausible { the LCLG mass function
would 
atten out as seen in Fig. 7.

In a recent paper Mart��nez et al. (2002) found a similar

attening of the mass function of groups, extracted from
the 2dF catalogue. This is also a deep sample, similar to
the LCLG catalogue.

We should also look for possible problems with our
simulated mass functions.

One problem is that we are comparing dark matter
halos with galaxy-populated halos. It is probable that ha-
los of smaller masses (1012 � 1013) can not easily host
three or more galaxies. This would explain the de�ciency
of small-mass galaxy groups. Thus, better simulations of
group catalogues will have to include galaxy formation.

There could also be a problem with mass determina-
tion. We devoted much attention to accurately evaluate
the mass estimates in simulations; in particular, we suc-
ceeded in �ltering out unbound groups. Still, the mass-
velocity dispersion relation of virialised groups widens to-
ward the small mass end, showing that virial masses of
small groups may have large intrinsic errors. This widen-
ing could be caused, �rst, by the predominance of radial
orbits in small groups, but this should be a rather small
e�ect. Another possibility is that small groups might have
a higher intrinsic velocity spread than large groups due to
di�erent formation histories, or in other words, due to a
mixture of young and old groups. This is a question that
could be only answered by a detailed dynamical study of
observed groups.

Another numerical e�ect could be an enhanced group
production in simulations, caused by gravitational two-
body collisions, which were discussed by Suisalu & Saar
1995 and Splinter et al. 1998). More recent analysis con-
cerning the convergence of dissipationless dark matter N -
body codes by Knebe et al. (2000) and Power et al. (2002)
demonstrates that these e�ects are small if the gravita-
tional softening and the time steps are chosen carefully.

5. Conclusion

In this work we have presented the mass function of the
Las Campanas Loose Groups selected by Tucker et al.
(2000). We have also studied the mass-velocity dispersion
relation that shows the expected scaling relation for viri-
alised systems. We conclude that the loose galaxy groups
are basically physical systems. The mass function was
compared with results of dark matter simulations.

Our main conclusions are:
1) The completeness interval of the LCLG sample is

found to be around 5 � 1013M�=h �M � 8� 1014M�=h.
2) The high end of the mass function of the LCLG

sample lies between the simulated mass functions corre-
sponding to �8 = 0:78 and �8 = 0:87.

3) At small masses M < 5 � 1013M�=h the mass func-
tion of the LCRS sample of loose groups 
attens out.
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